探花视频 - 国产探花 - 免费在线观看

科学研究
Analyze Time-to-event Data Using Survival Mixed Membership Blockmodel
邀请人:宋珊珊
发布时间:2024-06-04浏览次数:

题目:Analyze Time-to-event Data Using Survival Mixed Membership Blockmodel

报告人:宋方达 助理教授 (香港中文大学(深圳))

地点:致远楼108室

时间:2024年6月5日 15:00-16:30

摘要:Whenever we send a message via a channel such as E-mail, Facebook, WhatsApp, WeChat, or LinkedIn, we care about the response rate—the probability that our message will receive a response—and the response time—how long it will take to receive a reply. Recent studies have made considerable efforts to model the sending behaviors of messages in social networks with point processes. However, statistical research on modeling response rates and response times on social networks is still lacking. Compared with sending behaviors, which are often determined by the sender’s characteristics, response rates and response times further depend on the relationship between the sender and the receiver. Here, we develop a survival mixed membership blockmodel (SMMB) that integrates semiparametric cure rate models with a mixed membership stochastic blockmodel to analyze time-to-event data observed for node pairs in a social network, and we are able to prove its model identifiability without the pure node assumption. We develop a Markov chain Monte Carlo algorithm to conduct posterior inference and select the number of social clusters in the network according to the conditional deviance information criterion. The application of the SMMB to the Enron E-mail corpus offers novel insights into the company’s organization and power relations.

All are welcome!