题目:Finite Element Complexes
报告人:陈龙 教授 (加州大学尔湾分校)
地点:致远楼108室
时间:2024年9月13日 下午 16:00-17:00
摘要:A Hilbert complex consists of a sequence of Hilbert spaces interconnected by a series of closed, densely defined linear operators, such that the composition of two consecutive maps equals zero. The de Rham complex serves as the most prominent example. Finite element complexes arise from discretizing Hilbert complexes by substituting infinite dimensional Hilbert spaces with finite dimensional subspaces, based on a triangulation of the underline domain.
This presentation provides an overview of finite element complex construction, showcasing the finite element de Rham complex through a geometric decomposition method. The construction is extended to additional finite element complexes, such as the Hessian complex, elasticity complex, and divdiv complex, using the Bernstein-Gelfand-Gelfand (BGG) framework.
The resulting finite element complexes hold potential applications in numerical simulations for the biharmonic equation, linear elasticity, general relativity, and other geometry-related PDEs.
This work is a collaborative effort with Xuehai Huang from Shanghai University of Finance and Economics.
报告人简介:陈龙现为加州大学尔湾分校教授。1997年本科毕业于南京大学,此后硕士毕业于北京大学,博士毕业于美国宾夕法尼亚州立大学,博士论文获宾夕法尼亚州立大学的Alumin奖。先后在美国加州大学圣地亚哥分校、马里兰大学从事博士后研究工作,2007年起在加州大学尔湾分校工作至今 。主要研究兴趣为偏微分方程的数值方法、自适应有限元方法的理论和应用、多重网格方法的设计和分析、网格生成和计算几何。陈龙教授在这些方面做出非常杰出的工作,在SIAM J. Numer. Anal., SIAM J. Sci. Comput., Math. Comput. 等计算数学顶级期刊上发表论文40余篇,参编著作多部。是Computers and Mathematics with Applications, Multiscale Modeling and Simulation 等SCI期刊的编委,主持美国自然科学基金项目3项、美国能源部项目1项。
欢迎各位参加!