探花视频 - 国产探花 - 免费在线观看

科学研究
Optimal Initial Values and Regularity Conditions for Weak Solutions to the Navier-Stokes System
发布时间:2017-11-15浏览次数:

题目:Optimal Initial Values and Regularity Conditions for Weak Solutions to the Navier-Stokes System

报告人:Prof. Dr. Reinhard Farwig (TU Darmstadt)

地点:宁静楼108室

时间:2017年11月15日 下午2点半到3点半


摘要

Consider weak solutions of the instationary Navier-Stokes system in a three-dimensional bounded smooth domain $/Omega$. It is well known that any solenoidal initial value $u_0$ in $L^2(/Omega)$ with a vanishing normal component on the boundary admits a global in time weak solution. Moreover, if $u_0 /in H^1$ or even only $u_0 /in /mathcal{D}(A^{1/4})/subset L^3$, where $A =-P/Delta$ denotes the Stokes operator, then $u_0$ admits a unique local in time regular (strong) solution in Serrin’s class $L^s(0,T;L^q (/Omega))$ where $2/s + 3/q = 1$ for some $T = T(u_0)/leq/infty$.

The optimal class of initial values $u_0 /in L^2$ with this property was determined by H. Sohr, W. Varnhorn and myself in 2009 and is given by a certain Besov space with negative order of differentiability. This Besov space condition is used at (almost) all $t > 0$ along a given weak solution to find various new conditions on regularity and uniqueness of weak solutions.


个人简历

Reinhard Farwig 教授1982年博士毕业于波恩大学,1995年起成为德国达姆施塔特工业大学数学系教授。Farwig 教授发表了100多篇文章,其中引用率**次。他的主要贡献在于Navier-Stokes方程, Euler方程,调和分析,线性和非线性泛函分析以及发展方程等。

欢迎各位参加!